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Cosmology with clusters

Rosati et al. 2002

• number of clusters N(> M, z)
sensitive to cosmology

→ cluster surveys promising
cosmological probes

Mantz et al. 2008, 2010;

Vikhlinin et al. 2009; Rozo et al. 2010

• direct mass detection (weak lensing) too noisy
(shear peak statistics?)

• cluster selection in X-rays, SZ, or optical more efficient,
complete, pure

→ but need to rely on mass proxies
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• mass proxies currently calibrated from hydrostatic mass
estimates of relaxed clusters

• error budget (on σ8) dominated by possible biases in
hydrostatic masses

• need to reduce mass calibration uncertainty to < 5%
for future cluster count experiments (e.g. eROSITA)

• currently: bias known to ∼ 10% at z ∼ 0.25
Mahdavi et al. 2007

• redshift evolution of bias?
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Method

⇒ compare X-ray and weak lensing mass measurements of a
large cluster sample

• X-ray mass measures:

+ some have very small scatter:
gas mass, YX , core-excised luminosity / temperature

− may be biased at the 5 − 10% level

• weak lensing mass measures:

+ unbiased (if done right)

− large scatter

CANNOT select on lensing properties
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The Sample
• massive, X-ray selected clusters

used in cosmology analysis of

Mantz et al. 2010abc, Rapetti et al. 2010

• MAssive Cluster Survey (MACS) at

z > 0.3 (Ebeling et al. 2001,2007,2010)

• Bright Cluster Sample (BCS) at

z < 0.3 (Ebeling et al. 1998)

• REFLEX at z < 0.3 (Böhringer et al.

2004)

follow-up data:

• optical multi-band imaging (∼ 50 clusters)
• SuprimeCam @ Subaru (BVRIz)
• MegaPrime @ CFHT (u)

• Chandra X-ray imaging (∼ 70 clusters)
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Data challenges
• need accurate shape measurements and accurate photometry
• 5 generations of SuprimeCam configurations
• some of the issues:

• scattered light correction
• non-linearity
• unstable flat-fields
• stellar halos/ghosts (and other

artifacts)
• parts of a chip astrometrically

offset (???)
• limited dynamic range

• non-square pixels
• ghosting
• CTE
• ...
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Weak lensing: biases / scatter
• substructure, triaxiality:

→ cause scatter, but average mass unbiased
√

Clowe et al. 2004, Corless & King 2007, Meneghetti et al. 2010

• associated structures (two-halo term):
→ cause scatter, deviation from one-halo at r & 5Mpc

√
Johnston et al. 2007, Hilbert et al. 2009

• unassociated structures along line-of-sight:
→ cause scatter, but average mass unbiased

√
Hoekstra 2003

• shear estimates:
→ can be calibrated from Shear TEsting Program

√
Heymans et al. 2006, Massey et al. 2007

• redshifts of background sources:
→ bias in z leads to bias in mass
→ not accounting for shape of p(z) can also lead to bias
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Lensing by z ∼ 0.5 clusters

• lensing signal small
• redshift errors → larger shear errors
• foreground contamination
• cluster area small → fewer background sources
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Background redshift distribution

COSMOS-30 photo-z’s
Ilbert et al. 2009

• to first order:

g(z) ≃ βs(z)γ∞

βs(z) = β(z)/β∞

β(z) =
DLS

DS

• standard method: color
cuts

• apply to cluster field and
to standard deep field with
good photo-z’s

• assume 〈βs〉 of standard
field for cluster field
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two effects:

• larger scatter in βtrue/βassumed (think galaxy sample)

• cosmic variance: larger scatter in 〈βtrue〉/βassumed

(think cluster sample)

COSMOS-30: ∼ 3 × 3

SuprimeCam pointings

applied color cuts for 0.2 and

0.5 cluster

measure βassumed on remain-

ing 8 pointings

test variation of βs in each

pointing

(still too small to properly es-

timate cosmic variance)
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Photometric redshifts
+ avoids scatter/bias from 〈βs〉 assumption
+ evaluated per galaxy

• uBVRIz photometry; BPZ code (Benitez 2000)

• no training set (most clusters have little spectroscopic data)
• color calibration via stellar locus (High et al. 2009)

• one-point redshift estimate unbiased
√
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Photo-z errors

if we had p(z) . . .

• p(z) has finite width:
• flux measurement errors
• intrinsic width
• template errors
• prior

• even gaussian p(z) are
transformed to non-gaussian
distributions of g(z)

• p(z) generally not gaussian

• simple averaging or χ2

minimization lead to bias

• need to account for full p(z)
distribution
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Status of analysis

• goal: unbiased weak lensing masses of X-ray selected clusters

• as demonstrated: several small effects need to be taken into
account

• “expected result” (consistency with previous, lower redshift
samples)

→ “blind analysis”, develop algorithms on mock clusters

• current question:
• can we trust p(z) returned by photo-z code?
• if not, can we improve them empirically?
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Summary

• future cluster count experiments require mass proxies
calibrated to < 5% bias

• only observational method: weak lensing mass
measurements (unbiased, large scatter) of large cluster
samples (possibly biased masses, no scatter)

• this sample: redshift (and mass) range of current and future
cluster count experiments

• complementary to low-redshift studies (CCCP, LoCuSS)

• with increasing cluster redshift:
• source redshifts ever more important
• color cuts very noisy
• photo-z’s promising way forward, but need to understand

errors
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